1. Gel treatments (of any kind) are not polymer floods.
2. Crossflow makes gel placement challenging.
3. Adsorbed polymers, weak gels, and suspensions of gel particles plug low-k rock by a greater factor than high-k rock.
GEL TREATMENTS ARE NOT POLYMER FLOODS

Crosslinked polymers, gels, gel particles, and “colloidal dispersion gels”:

• Are not simply viscous polymer solutions.

• Do not flow through porous rock like polymer solutions.

• Do not enter and plug high-k strata first and progressively less-permeable strata later.

• Should not be modeled as polymer floods.
Distinction between a blocking agent and a mobility control agent.

For a mobility control agent, penetration into low-k zones should be **maximized**.

For a blocking agent, penetration into low-k zones should be **minimized**.
Gel Placement in Heterogeneous Systems with Crossflow

Ideal Near-Wellbore Treatment

Ideal Far-Wellbore Treatment

Reality

Water Oil Gel

SPE 24192
CROSSFLOW MAKES GEL PLACEMENT MORE DIFFICULT!!!

Crossflow in a two-layer beadpack. SPE 24192
Xanthan solutions displacing water; $k_1/k_2 = 11.2$.

- 0-ppm xanthan, 1 cp
- 200-ppm xanthan, 3 cp
- 500-ppm xanthan, 8 cp
- 1000-ppm xanthan, 23 cp
- 2000-ppm xanthan, 75 cp

Layer 1
Layer 2

Xanthan
Water
USE OF A WATER POSTFLUSH WITH A WATER-LIKE GELANT

(a) Injection of a Water-like Gelant
(b) Injection of a Water Postflush Prior to Gelation
(c) Shut-in during Gelation
(d) Water Injection after Gelation

USE OF A WATER POSTFLUSH WITH A WATER-LIKE GELANT

ADVANTAGES
- High injectivity could be maintained after gelation.
- Incremental oil could be recovered quickly.

LIMITATIONS
- The gel treatment will not help much beyond the greatest distance of gelant penetration.
- Sufficient gelant must be injected.
- Long gelation times are needed in unfractured wells.
- Gelant resistance factor should not exceed that for water.
- Gelant resistance factor should not increase during gelant placement.
- Transverse dispersion may limit the idea to thick formations.
Sophisticated Gel Treatment Idea from BP

In-depth channeling problem, no significant fractures, no barriers to vertical flow:

- BP idea could work but requires sophisticated characterization and design efforts,
- Success is very sensitive to several variables.

BRIGHT WATER—A VARIATION ON BP’s IDEA (SPE 84897)

- Injects small crosslinked polymer particles that “pop” or swell by ~10X when the crosslinks break.
- “Popping” is activated primarily by temperature, although pH can be used.
- The particle size and size distribution are such that the particles will generally penetrate into all zones.
- A thermal front appears necessary to make the idea work.
- The process experiences most of the same advantages and limitations as the original idea.
KEY QUESTIONS DURING BULLHEAD INJECTION OF POLYMERS, GELANTS, OR GELS

• Why should the blocking agent NOT enter and damage hydrocarbon productive zones?

• How far will the blocking agent penetrate into each zones (both water AND hydrocarbon)?

• How much damage will the blocking agent cause to each zone (both water AND hydrocarbon zones)?
GELANTS FLOW THROUGH POROUS ROCK; GELS DO NOT

Gelant flows freely like a polymer solution

Partial gel formation

MOBILE GELANT
IMMOBILE GEL
FLOW DIRECTION

Gel filling all aqueous pore space
1-day-old 0.25% HPAM gel plugs the core face in a 7.2 darcy core

1-day-old gel: 0.25% HPAM, 0.0208% Cr(III) acetate, 41°C, 7.2 darcy polyethylene.

First section

Second section
1-day-old 0.2% HPAM gel plugs the core face in a 9.6 darcy core

1-day-old gel: 0.20% HPAM, 0.020% Cr(III) acetate, 41°C, 9.6 darcy polyethylene.
1-day-old 0.15% HPAM gel plugs the core face in an 8.5 darcy core.

1-day-old gel: 0.15% HPAM, 0.015% Cr(III) acetate, 41°C, 8.5 darcy polyethylene.
4-day-old 0.15% HPAM gel plugs the core face in a 1.57 darcy core.

Gel: 4-day-old 0.15% HPAM, 0.015% Cr(III) acetate, 1% NaCl, 0.1% CaCl$_2$, 41°C. 1570-md fused silica. 100 cm3/hr (7 ft/d).

Section 1 (2 cm length)
Section 2 (9.6 cm length)
Section 3 (1.9 cm length)
4-day-old 0.15% HPAM gel plugs the core face in a 1.57 darcy core

1570-md fused silica.
Injection rate = 100 cm³/hr (7 ft/d).

Gel: 0.15% HPAM, 0.015% Cr(III) acetate, 1% NaCl, 0.1% CaCl₂
4-day-old 0.15% HPAM gel plugs the core face in a 1.57 darcy core

Injection rate = 100 cm³/hr (7 ft/d).
Brine: 1% NaCl, 0.1% CaCl₂,
Core: 1570-md fused silica.

Section 1, 2 cm

Section 2, 9.6 cm

Section 3, 1.9 cm
Al(III)-citrate-HPAM gels act like other gels.

300-ppm HPAM, 15-ppm Al(III) as citrate, 0.5% KCl, 41°C, 707-md Berea sandstone 15.8 ft/d (6.7 PV/hr) injection rate.

DOE/BC/14880-10 (March 1995) 51-64.
A 1-day-old Cr(III)-acetate_HPAM gel with 0.5% HPAM can extrude through a 28 darcy sand pack, but dp/dl is ~ 200 psi/ft!!!
Adsorbed polymers, “weak” gels, particle suspensions, and “dispersions” of gel particles reduce k in low-k rock more than in high-k rock.

Adsorbed HPAM $M_w = 5.5 \times 10^6$
20% hydrolysis.
Sandstone rock.

Vela et al. SPEJ (April 1976), 84
Contrary to some claims, adsorbed polymers, “weak” gels, and gel “dispersions” can harm flow profiles!!!
USE OF PARTICULATES -- Problems

- Particles are not all the same size.
- Pores are not all the same size.
- Some particles will enter most or all pores.
- Permeability reduction may be greater in low-k pores than in high-k pores.
Could allow a low-mobility foam to form in high-k zones but not in low-k zones.

Much lab work needed to identify the foam.

Aqueous phase must not contain a gelant.

Foam must be persistent in the high-k zone.
PHYSICAL REALITIES FOR IN DEPTH PROFILE MODIFICATION

RANDY SERIGHT, New Mexico Tech

1. Gel treatments (of any kind) are not polymer floods.
2. Crossflow makes gel placement challenging.
3. Adsorbed polymers, weak gels, and suspensions of gel particles plug low-k rock by a greater factor than high-k rock.